Rapid, Accurate and In-Situ Quantification of Lead for Drinking Water Applications

National Environmental Monitoring Conference 2018 Merwan Benhabib, PhD VP Engineering

Sources of **LEAD** in Drinking Water

Copper Pipe with

Lead Solder: Solder made or installed before 1986 contained high lead levels.

Lead Service Line: The service line is the pipe that runs from the water main to the home's internal plumbing. Lead service lines can be a major source of lead contamination in water.

Faucets: Fixtures inside your home may contain lead.

Galvanized Pipe:

Lead particles can attach to the surface of galvanized pipes. Over time, the particles can enter your drinking water, causing elevated lead levels.

Lead Goose Necks:

Goose necks and pigtails are shorter pipes that connect the lead service line to the main.

MAIN WATER LINE

WATER

METER

Current monitoring procedure

GC/MS:

- Expensive
- Skilled labor required
- Dedicated system and team
- Time consuming
- Not deployable

Colorimetric assay:

- Not quantitative
- No speciation
- Interferences

Raman spectroscopy

1920s

1990s

2000s

Optical telecommunications drove technology needed for portable, in-line, and compact Raman spectroscopy

But Raman is weak

- σ_{NR} ~ 10⁻³⁰ cm²/molecule
- 1 in 10 million photons

Surface-Enhanced Raman Scattering (SERS)

- At a rough metal surface
 - Increased field intensity
 - Which means increasedRaman signal
- SERS activity quantified by Enhancement Factor
 - EF range: 1 10^{10}

Multi-particle effects

Nanoparticles (gold/silver) enable ppb-level detection

Analyte / substrate interaction

 The SERS effect requires an interaction at the surface – within a couple nanometers

- Analyte must
 - Interact with the substrate
 - Interact with a linker molecule
 - Change the properties of another SERS-active molecule
- Gold nanoparticles: many options to control surface properties

Raman spectrometer equipment

Instrumentation

- 785-nm, 60-mW at substrate
- Cooled (-20°C) CCD detector
- 200-2000-cm⁻¹, 4-cm⁻¹ resolution

Why not widely used?

- Achilles' heel: reproducibility
 - Variations in substrate properties
 - Stochastic nanoparticle alignments
- One reviewer: "SERS doesn't work"

OndaVia has made SERS a quantitative, repeatable method using:

- Internal standards
- Nanoparticle structure
- Surface modifications
- Intelligent software

Surface modification using 2-mercaptoisonicotinic acid *

* Tan E., Yin P., Lang X., Zhang H., L. Guo. A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles (2012), *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, Vol 97, p1007-1012.

Quantitative SERS

- Calibration and interferences:
 - Standard Addition (lead and sodium sulfide)
 - Accuracies of better than 10% reported with presence of competing ions
- Simple Standard Operating Procedure allows for quick analyses:
 - 1. Prepare 6 vials of 0.9 ml of sample
 - 2. Add 0.1 ml of DI, 25, 50, 75, 100 ppm of Lead and 1 ppm of sulfide in
 - 3. Add to each vials 40 ul of a 2-MNA with NaCl solution
 - 4. Wait 10 min
 - 5. Mix with Nanoparticles
 - 6. Measure each vial

Lab Standard Calibration Curve

- Wide dynamic range of interest 0 100ppb
- Accurate quantification better than 10%.

Known concentration (in ppm)

Quantitative analysis in real world samples

Filtered vs.
Unfiltered

Tap water	Averages
expected	measured
8.3	8.8
4.5	4.2
2.2	2.3
1.1	1.3
0.00	0.06

Ultra compact solid state spectrometer

Instrumentation

- 785-nm, 50-mW,10 um slit, No temp control
- APS-CMOS Detector
- 200-2000-cm⁻¹, 5-cm⁻¹ resolution

Lab Standard Calibration Curve

Accurate quantification better than 10%.

Known concentration (in ppm)

Special thanks to

Mark Peterman, PhD

Mayra Zaragoza

Melissa Yao

Kristle Cruz Garcia

And to...

